]>
Commit | Line | Data |
---|---|---|
1 | # Gravity–2-dimensional.LACE | |
2 | ||
3 | # The small mass m moves within the gravitational potential of a mass M. | |
4 | # The situation is analysed in polar coordinates. | |
5 | ||
6 | # r'' = r * phi'^2 - gamma*M/r^2 | |
7 | # phi'' = -2* r' / r * phi' | |
8 | ||
9 | include CompoundFunctions.LACE # idivide | |
10 | ||
11 | coefficient(1): +1 -> r0' # -1 to move initially towards M, +1 to move away from it | |
12 | coefficient(2): -1 -> -r0 # initial distance of m to M | |
13 | coefficient(3): +1 -> phi0' | |
14 | coefficient(4): -1 -> -phi0 | |
15 | coefficient(5): +1 -> gamma*M | |
16 | ||
17 | iintegrate r*phi'^2, -gamma*M/r^2 -> -r' # input is r'' | |
18 | IC: r0' | |
19 | iintegrate -r' -> r | |
20 | IC: -r0 | |
21 | ||
22 | iintegrate -r'/r*phi', -r'/r*phi' -> -phi' # input is phi'' | |
23 | IC: phi0' | |
24 | iintegrate -phi' -> phi | |
25 | IC: -phi0 | |
26 | ||
27 | multiply r, -phi' -> -r*phi' | |
28 | multiply -r*phi', -phi' -> r*phi'^2 | |
29 | multiply r, r -> r^2 | |
30 | idivide gamma*M, r^2 -> -gamma*M/r^2 | |
31 | ||
32 | idivide -r', -r*phi' -> r'/r*phi' | |
33 | invert r'/r*phi' -> -r'/r*phi' | |
34 | ||
35 | output(x): r # distance | |
36 | output(y): phi # angle |