# Gravity–2-dimensional.LACE # The small mass m moves within the gravitational potential of a mass M. # The situation is analysed in polar coordinates. # r'' = r * phi'^2 - gamma*M/r^2 # phi'' = -2* r' / r * phi' include CompoundFunctions.LACE # idivide coefficient(1): +1 -> r0' # -1 to move initially towards M, +1 to move away from it coefficient(2): -1 -> -r0 # initial distance of m to M coefficient(3): +1 -> phi0' coefficient(4): -1 -> -phi0 coefficient(5): +1 -> gamma*M iintegrate r*phi'^2, -gamma*M/r^2 -> -r' # input is r'' IC: r0' iintegrate -r' -> r IC: -r0 iintegrate -r'/r*phi', -r'/r*phi' -> -phi' # input is phi'' IC: phi0' iintegrate -phi' -> phi IC: -phi0 multiply r, -phi' -> -r*phi' multiply -r*phi', -phi' -> r*phi'^2 multiply r, r -> r^2 idivide gamma*M, r^2 -> -gamma*M/r^2 idivide -r', -r*phi' -> r'/r*phi' invert r'/r*phi' -> -r'/r*phi' output(x): r # distance output(y): phi # angle