COEFFICIENT.1 AY # 2*2pi/day*sin(phi)
COEFFICIENT.2 AX # = AY
COEFFICIENT.3 B # 2*2pi/day*cos(phi)
-COEFFICIENT.4 G # gravitational acceleration = 0,981 da-m/s²
-COEFFICIENT.5 H # height h [da-m]
+COEFFICIENT.4 G # gravitational acceleration = 9,81 m/s²
+COEFFICIENT.5 H # height h
PROGRAM DIVISION
-1 -> COEFFICIENT.H -> -h
--- /dev/null
+# FallingParticle, VERSION 20240225
+# Calculate the deflection from the vertical caused by the Earth's rotation of a particle falling freely from rest from a height h.
+# Differential Equations:
+# x''=-bz'+ay' # x-axis is along latitude, directed to east
+# y''=-ax' # y-axis is along longitude, directed to north
+# z''=-g+ax' # z-axis is perpendicular to the surface of earth
+# g: gravitational acceleration = 9,81 m/s²
+# a: 2*omega*sin(phi)
+# b: 2*omega*cos(phi)
+# omega: rotation velocity of the earth = 2*pi/day
+# phi: Latitude of location (0-90°)
+# Initial Condition: z(0)=h
+# The full solution requires 6 INTEGRATORs, Anabrid-THAT just has 5. The deflection to longitude (y) is neglegible and can be omitted (marked #*).
+# It could also be solved in a separated algorithm omitting x.
+
+coefficient(1): a_y
+coefficient(2): a_x
+coefficient(3): b
+coefficient(4): +1 -> g
+coefficient(5): -1 -> -h
+
+iintegrate (-bz', ay') -> -x' # Input is x''
+iintegrate (-x') -> x
+
+iintegrate (y'') -> -y'
+iintegrate (-y') -> y
+
+iintegrate (z'') -> -z'
+iintegrate (-z') -> z:
+ IC: -h
+ limit: GT0 # via z to cathode of diode to SJ
+
+-x' * a_x -> -ax'
+y'' = -ax'
+-y' * a_y -> ay'
+invert (-ay') -> ay'
+-z' * b -> -bz'
+isum(-ax', g) -> z'' # gives -g+ax'
+
+# x -> output (x)
+# y -> output (y)
+# z -> output (z)
+
+#OP-TIME 7,3ms